

Summary

seven is a Python 2.6+ compatibility layer for Python 2.5. It allows you to
import Python 2.6 or 2.7 code in a 2.5 interpreter.

It was mainly intended to be used on Google App Engine, before the guys at
Google added Python 2.7 support.

The project development is now discontinued, but you are welcome to use it for
whatever you might need it.

It is licensed under the MIT licence, except for the lib2to3 code it contains,
which in made available under the PSF licence. Those files contain individual
licence information, so check the source code for more info.

Basic usage

Before importing non-compatible code, you need to start the seven import
hook by calling seven.start():

>>> import seven
>>> seven.start()

>>> import incompatible.modules

>>> seven.stop() # optional

The above will install an import hook and preprocess all modules before
importing them using lib2to3 from the Python 2.7 stdlib. The
installed hook will process all imported python modules until you call
seven.stop(). If you don’t stop it, all imports will be processed.

Import whitelists

Preprocessing all imported modules might not always be a good idea, mainly for
two reasons. Firs, it comes with a slight performance penalty. Second, more
important reason is that exceptions raised in modules that have been processed
by the import hook can be really hard to debug. Line numbers are usually wrong,
and the filename is not displayed correctly. These things might be improved in
the future, but for now it is advised that only the necessary modules be
processed.

The following example will only preprocess the modules foo, spam.eggs
and their submodules, foo.* and spam.eggs.*:

>>> seven.start(['foo', 'spam.eggs'])

What gets fixed?

Of course, not all fixers have been implemented yet. The following features are
available (without using from __future__ imports):

	with statement (from __future__ import with_statement)

	absolute imports (from __future__ import absolute_imports)

	integer division (from __future__ import division)

	class decorators

Class decorators are converted like this:

@decorated
class C:
 pass

becomes:

class C:
 pass
C = decorated(C)

How to disable logging and pickling?

On certain production environments, logging might not be very useful, or
writing files might not be possible (e.g. App Engine). To disable logging or
writing pickle dumps, create a module named sevenconfig and add the log =
False or speedups = False globals (or both). Make sure the module is
importable before importing seven.

What needs to be implemented?

The following features do not have fixers yet:

	indented class decorators

	except Exception as e:

	advanced string formatting

	print as a function

	set literals

	dict and set comprehensions

	multiple context managers in one with statement

	etc.

How to write fixers?

By subclassing seven.lib2to3.fixer_base.BaseFix. You can also fork this
project on GitHub [https://github.com/aatiis/seven], have a look at the existing fixers in src/seven/fixes
and add your own, thend send me a pull request.

Index

 nav.xhtml

 Table of Contents

 		Summary

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_static/file.png

_static/comment-bright.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

